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ABSTRACT

The Application Portable Parallel Library (APPL) is a subroutine-based library of communication prim-

itives that is callable from applications written in FORTRAN or C. APPL provides a consistent pro-

grammer interface to a variety of distributed and shared-memory mnltiprocessor MIMD machines. The

objective of APPL is to minimize the effort required to move parallel applications from one machine to

another, or to a network of homogeneous machines. APPL encompasses many of the message-passing

primitives that are currently available on commercial multiprocessor systems. This paper describes APPL

(version 2.3.1) and its usage, reports the status of the APPL project, and indicates possible directions for

the future. Several applications using APPL are discussed, as well as performance and overhead results.

INTRODUCTION

Computer simulations of multidisciplinary, grand challenge problems in aerospace propulsion involve con-
siderable programming effort and computing time. Reductions in simulation time and cost can be

achieved by computing portions of the simulation in parallel, using multiprocessor systems. Many dif-

ferent multiprocessor systems are available, each having a unique programming environment that takes a

significant amount of time to learn. In the future, it is possible that a distributed computing environment

will be used, which will complicate the programming effort even more. The Application Portable Parallel

Library (APPL) project was initiated to facilitate the exploitation of parallel computer technology, by min-

imizing the learning curve and programming effort required to move application codes to different and/or
networked machines. It was also intended to provide a basis for building other software tools and utilities

to support parallel processing.

A distributed memory message-passing model has been chosen as the basis for APPL, became it can be

used on the variety of machines on the market today, including distributed memory, shared memory, and

hybrid (cluster model) machines. APPL allows the user to develop application programs written only in

terms of communicating processes, and thus design programs independent of target hardware. Basic

message-passing primitives comprising APPL are used to communicate between processes, and the prim-
itives are the same regardless of the machine. Care has been taken to minimize the overhead incurred with

using portable, rather than the native, primitives of the particular target. As a result, the user is free to map

an application to any particular hardware configuration (from stand-alone machines to a network of homo-

geneous machines) merely by specifying a process definition file. A special initiator task takes care of ini-

tializing the environment and loading the executable code. This combination of portable message-passing

primitives, a process definition file, and an initiator task yield an application that is portable. Tools built on

top of APPL become portable as well.

This research was supportedby NASA Lewis Research Center undercontract NAS3-25266 with GaryL. Cole as monitox



This report describes the development approach and the APPL version 2.3.1 software. An example

problem is then developed to illustrate the features of APPL. Finally, the status of the project, as well as

applications and performance, are discussed, with concluding remarks to indicate possible directions for

the future of the project.

APPL DEVELOPMENT APPROACH

The initial effort in developing a portable capability at NASA Lewis Research Center involved examining

a number of portable libraries that already existed in the public domain. Commercial packages were not

seriously considered because of potential restrictions by commercial licensing agreements when building

other tools on top of the portable library. The intent was to acquire the most suitable portable library and

adapt it to the computing environment at NASA Lewis. The libraries examined were PICL from Oak

Ridge National Laboratory (ref. 1), and PARMAC from Argonne National Laboratory (ref. 2). Early
versions of the TCGMSG and P4 libraries from Argonne were also examined. TCGMSG and P4 were

both developed there as outgrowths of PARMAC, and have evolved since the development of APPL (refs.
3,4).

A review of the available libraries helped establish the features desired for APPL, including:

• A well-defined set of primitives

• Support for applications programmed in Fortran or C

• Synchronous and asynchronous communication

• Support on both shared and distributed memory machines

• Communication via shared memory rather than via sockets on shared memory machines

At the time, none of the existing libraries completely satisfied these requirements, but they did provide a

good basis for what was needed. The TCGMSG package was chosen as the basis for APPL, with portions

of the P4 package filling in for capabilities which TCGMSG lacked. The effort has focused on blending

these libraries into a single library, by augmenting and/or modifying where required, to satisfy the above

requirements. Modifications to the original Argonne packages have included performance and func-
tionality enhancements, code re-structuring, and the addition of a more versatile user interface.

APPL SOFTWARE

Overview of Commands and Parameters

The number of communication primitives included in APPL have been kept to a minimum. The primitives
included in APPL are those operations found to be essential to writing a parallel application. These prim-

itives comprise a common subset of message-passing and support operations found on distributed memory

machines today. Potential portability across intended target machines was a factor in selecting which prim-

itives to include in APPL. Additional operations may be added in the future.

It is hoped that eventually a message-passing standard will emerge across all commercial platforms. Such

an effort has begun (ref. 5), and it should be noted that the communication primitives included in APPL are

a subset of the elements included in the discussions regarding a standard message-passing library. When a

standard does emerge, applications developed using APPL should be able to adopt this standard without
much effort.

The APPL low-level primitives are listed in table 1, along with a brief description. High-level primitives,

built on top of the low-level primitives, are listed in table 2. Most of the primitives are seN-descriptive;
however, the functionality of the different send and receive communication primitives is discussed below.



TheAPPLssend primitive is a fully blocking send operation. The sending process sends a message and

then blocks until that message has been received by the receiving process. The APPL srecv primitive is a

blocking receive operation. The receiving process blocks until the appropriate message, selected by a

message type, arrives. Transparent to the user, the receiving process returns an acknowledgement of the

receipt of the message to the sending process. Once acknowledged, the sending process is free to continue

execution. A fully blocking send/receive operation is also referred to as synchronous communication.

Caution must be applied here, in order to avoid deadlock situations.

The APPL asend routine is a partially blocking send operation. The sender returns from the asend

operation once the message being sent has vacated the message buffer it had been occupying. This type of

send operation is sometimes referred to as an asynchronous send operation. The APPL arecv routine is a

blocking receive operation. The receiving process blocks until the appropriate message, selected by a

message type, arrives. There is essentially no difference between the srecv and arecv primitives from a

user's point of view, and in future releases of APPL, these primitives may be merged into a single receive

primitive. The underlying difference between these primitives is that the arecv primitive does not return an

acknowledgement of the message arrival to the sender.

At the moment, APPL does not support a non-blocking receive operation, such as the Intel iPSC/860 irecv

operation, or a non-blocking send operation, such as the Imtel iPSC/860 isend operation (ref. 6). These

operations may be added in the future as required. Also, the various APPL send and receive operations are

not intermixable. The asend primitive must be used in conjunction with the arecv primitive, and the ssend

primitive must be used in conjunction with the srecv primitive; however, this feature may also change in a
future release of APPL.

Process Definition File

The APPL model considers an application to be a collection of communicating processes. Thus the appli-

cation program is written to match the structure of the problem, rather than the structure of the target archi-

tecture on which the application will be executed. A programmer should not have to be concerned with the

underlying interconnection network of a potential target machine. If such machine idiosyncracies were

included in programming an application, that code would require modification ff ported to a machine with

a different interconnection network. For instance, APPL contains no gray code mapping functions. If an

application were programmed using a gray code mapping scheme, and then moved to another target, this

mapping scheme would be meaningless, and would require recoding.

APPL attempts to eliminate such machine idiosyncracies and architecture-specific issues from the appli-

cation code development phase, resulting in a code that is not only portable, but also "architecture-inde-

pendent." However, given the variety of parallel architectures, including distributed memory, shared

memory, and "cluster model" architectures, a method is required to map a portable application either to a

particular target architecture, or across a network of machines. This method would describe how an appli-

cation is distributed across a network of physical hardware. If the application were to be moved to a new

machine, or a network of machines, only this description would change. The application code itself would

not change.

In the APPL environment, once the portable application code has been written and is ready to be executed,

a target machine is chosen, and a mapping between application and architecture is performed. A process

definition file defines this mapping of application to architecture (see some examples of process definition

files in figure 1). The executable images which compose the application are listed in the process definition

file, along with the machine-specific requirements necessary to map each executable image to a physical

processor. The information listed in a process definition file may include user name(s), host name(s), exe-
cutable image name(s), the number of executable images in the application, the mapping style, and the

working directory which contains the executable images and I/O files. The information required in the

process definition file varies, depending on the selected target architecture.



Initiator Proces_

Once a process definition file has been defined that describes a particular application and its physical

mapping, a method is required to start the application on the specific target machine. To accomplish this,

APPL uses an initiator process, which reads the process definition file and starts the executable images on

the appropriate physical pieces of hardware. The initiator process handles all machine-specific tasks

required in starting and terminating an application, and further masks the implementation-specific details
of executing an application on a particular architecture from the user.

To invoke the initiator process, the user simply types compute. The name of the process definition file may

be supplied to compute using the '-p' option, or the default name 'procdef' can be used. Depending on the

selected target architecture, the initiator process begins the machine-specific tasks required to access the
required processors and loads the executable images of the application, as illustrated in figure 2. These

tasks may vary greatly from machine to machine because of the diversity in APPL's target platforms. For

instance, on the Intel iPSC/860, the initiator process performs the getcube, load, waitall and relcube oper-

ations. On a network of workstations, the initiator process does much more. In this situation, processes

must be created usingfork/execv/rsh, and message-passing data structures must be defined using calls to
shared memory and semaphore manipulation routines. All of these machine-specific details are hidden
from the user.

Implementation Details

The APPL source code consists of a set of library routines, written in C, which compose the APPL prim-

itives, along with an initiator program, also written in C. Compiler directives surround machine-specific

code, which allows the APPL code to be transported to a variety of machines, and simply recompiled to

run on a particular machine. Thus the APPL source code itself is portable, in addition to all application
codes developed using APPL.

The APPL machine implementations can be divided into three distinct subsets: distributed memory and
shared memory implementations, and an implementation across a network of machines. The more

important aspects of these three subsets are discussed below. Also, the relative ease of porting APPL to
additional target platforms is discussed.

a. Distributed memory machine implementation

The distributed memory machine implementation is the simplest of the three subsets. Each APPL library

call consists of a wrapper around a similar native message-passing call. Parameters are adjusted and
checked for validity.

The initiator process for the distributed memory machines consists of a host program, which starts the exe-

cution of the application and waits for execution to terminate. On the Delta machine, a simple script is
used in place of a host program. The initiator process reads the process definition file and determines the

mtmber of processors required for the application. The initiator then accesses the number of processes

required and loads the executable images onto the specified processors. The initiator then idles, waiting for

the application to complete. On completion, the initiator releases the processors and terminates.

b. Shared memory machine implementation

The shared memory machine implementation is more complex. Since there is no native message-passing
library on these machines, one had to be implemented using the available features of each machine.

System resources such as shared memory and semaphores are used to allow message-passing between

multiple processes. Application processes are grouped into a cluster, with one application process in the

cluster singled out as a cluster master, as illustrated in figure 3. Multiple clusters are permissible on a



singlemachine,howeverfor performanceconsiderationsallprocessesaretypicallygroupedintoasingle
cluster.

Theclustermasteriscreatedbytheinitiatorprocess,usingcallstofork and execv. Thepbegin primitive is

invoked in the application code, and works with the initiator to establish the proper environment to run the

application. To establish this environmem, the cluster master requires information about the application
from the initiator. This information is generated by the initiator, or taken from the process definition file by

the initiator, and includes the cluster communication port number, the executable image names of the

remaining cluster processes, and the application working directory. The cluster master stores this infor-

mation in a shared memory area, S1, which is accessible by all cluster processes.

A second, larger shared memory area, $2, is acquired and initialized by the cluster master. This area is also

accessible by all cluster processes, and is used for the data structures required to enable message-passing.

These data structures include sets of message buffers and message headers, a linked list indicating flee

message buffers and message headers, and a message queue for each process. The cluster master acquires

a segment of shared memory large enough to hold one set of these data structures for each process in the

cluster. Since these structures are in shared memory, message-passing between processes occurs when the

sending process writes a message into the buffer and queue area of the destination process. A block/

wakeup facility is implemented using a semaphore to enable waiting for messages without polling the

receive queues.

Once all data structures are in place, the remaining cluster processes are created by the cluster master using

fork/execv. Once all the application processes have started, the initiator idles until all the processes have

completed. Then the initiator process terminates.

c. Implementation across a network of workstations

The APPL implementation on a network of workstations is similar to that of the shared memory machine
implementation. When an application is run across a network of machines, there is typically one cluster of

processes per machine. The data structures required for message-passing are created and initialized by the

cluster master on each machine. However, rather than communicating between clusters via shared

memory, information is transferred between Internet domain SOCK_STREAM sockets, which use TCP/IP

over Ethernet. Multiple clusters may exist on any single workstation; however, communication between

processes located on the same machine yet in different clusters will also occur via sockets. To achieve the

best performance, all processes on a single machine should be grouped into a single clusten Also, most

TCP implementations try to 'batch-up' requests by waiting for some minimum amount of data to commu-
nicate. The NO_DELAY feature is used to avoid stream-oriented batching, and it improves performance

considerably. The network proves to be the bottleneck in most applications which require substantial com-
munication however, if a common Ethernet is used between workstations. This fact should be considered

when implementing an application.

Each process cluster has a communication process whose function is to establish a communication link
between clusters, and to receive messages from processes outside of the cluster. This communication

process allows computational processes to continue independently of communication. If a connection

request occurs, the communication process establishes a connection, and enters the appropriate infor-
marion into a connection table.

Rather than each process establishing a connection to every other process, communicating processes are

connected as required. Figure 4 illuslrates a message transmission between process A and process D. It is

assumed that A and D are in separate clusters, because if they were in the same cluster, communication

would occur via shared memory. Process A must check its communication table to determine if a socket

connection to process D's cluster already exists. If it does, then communication occurs across that path. If
such a connection does not exist, process A initiates a connection to process D's cluster. This allows



processA tocommunicatewithany other process in that cluster, so in this example, processes C and D are

included. When a message arrives from a process outside of the cluster, the communication process, CP,

receives the message and stores it in the appropriate message queue of the destination process, D. Process
D can now receive this message as if the message had originated within its own cluster.

d. Future implementations

Because APPL has been implemented on these three classes of machines, porting APPL to new targets in

these categories is a relatively simple procedure. On the distributed memory machines, the APPL prim-

itives must be matched to the corresponding message-passing calls from the new target machine. On other

machines, an APPL port which is similar to the desired port is chosen as a starting point. The implementor

may have to resolve some compiler differences, and locate certain include files on a particular machine. It

is assumed that a capability such as that provided by the UNIX System V semaphore and shared memory
system calls (reg. 7) exists on most intended platforms. If such a capability does not exist, a socket-based

message-passing implementation can be developed; however, this might require some re-structuring of
APPL.

Tools

Figure 5 indicates that APPL is intended to be one piece of a larger programming environment. APPL was

developed first, so that other tools and utilities could be built, and thus be portable by virtue of being built

on top of APPL. Such tools are beginning tO emerge (reg. 8).

In the absence of APPL-specific programming tools such as performance monitors and parallel debuggers,

it has been fouad that other existing tools can be used in conjunction with APPL to round out the program

development environment. For instance, Intel provides a Performance Analysis Tool (PAT) (reg. 9) for the

iPSC/860 hypercube. A programmer can access PAT by linking the performance-monitoring library with

an APPL program. Since APPL invokes the native message-passing library on the Imel iPSC/860, the

calls to the performance-monitoring library routines are made as if the application had been written using

the native library. The performance monitor results can then be interpreted for the APPL programs. Figure

6 illustrates a bar chart compiled using information obtained from using PAT on the ISTAGE code (reg.
10).

On the Silicon Graphics 4D/480 machine, the Power FORTRAN Accelerator (reg. 11) can be used to paral-

lelize sections of code automatically. This accelerator concentrates on splitting FORTRAN DO loops

across processors, and can be used in conjunction with APPL to achieve improved results on multipro-

cessor SGI machines. Also, SGI tools such as grosview (reg. 12) can assist a programmer in determining
what is occurring during the execution of an application on a general level.

EXAMPLE PROBLEM

This section describes an example problem to illustrate the various features of APPL. The example, kept

simple for explanation purposes, is a heat flow problem (reg. 13) which uses Laplace's equation

_r _r

Ox2 + Oy2

tO determine the steady state temperature of a fiat plate exposed to constant boundary conditions. The
problem is stated as follows:

A thin steel plate is 20 x 20 cm square. If one edge is held at 100° C, and

the others are held at 0° C, what are the steady state temperatures at the

interior points?



Theflatplatehasacertaininitialtemperature,andissubjectedto atemperatureateachof itsfour
boundaries.Todiscretizethisproblem,thefiatplateisdividedintosectionsof sizet_x by Ay. In this

application, it is assumed that _x = Ay. The resulting grid is now numbered so that each intersection rep-

resents a point of the fiat plate at which a temperature can be evaluated. The boundary points are included

in this numbering. A 14 x 14 grid is used for this example, and is illustrated in figure 7.

A central difference approximation is used to calculate the temperature Ti,j at each interior grid point. All
exterior grid points assume the boundary temperatures. The iterative equation

+ T (t) + T (t) T(?
T_t+)l,j i-l,j kj+l + _,j-I

T(' +I) =
_'J 4

is used to calculate a temperature solution for each grid point (i,j). The value of Tij at iteration (t+l) is an
average of the temperatures of its four nearest neighbors at iteration (t). A solution is obtained when a

specified convergence criterion is met.

Since the temperature value at each grid point is calculated from only the neighboring grid point values,
the problem can be easily divided across multiple processors, as illustrated in figure 8. Communication is

required to transmit boundary information between neighboring processes. Each process requires enough

memory space to store its portion of the computational grid, along with two columns of boundary data.

A pseudo-code segment is included in figure 9 to illustrate how such a problem would be programmed

using APPL primitives. There are two sections of interest. The first determines the neighboring processes

of each process. The second is the main DO loop, which calculates each new temperature value for a

specified number of iterations. On each iteration, the boundary temperature values are exchanged between

neighbors, and the new temperature values are calculated by each process for their own portion of the com-

putational grid. For simplicity in this example, a user-supplied maximum number of iterations is used,

rather than testing for convergence.

Once this application is programmed using APPL primitives, the code is portable to the variety of archi-

tectures on which APPL is implemented. These architectures range from hypercubes, to meshes, to shared

memory machines, to a network of workstations. At this point, an architecture is selected, and a process
definition file is written, defining the mapping between architecture and application. Once a process deft-

nition file has been established, the initiator program, compute, is called, and the application is started on

the selected target machine(s).

STATUS

APPL is currently implemented on the Imel iPSC/860, the l.ntel Delta machine, the Imel simulator, the

Alliant FX/80, the Silicon Graphics IRIS4D series, the IBM RS6000 series, the Sun SparcStation series,

and the Hypercluster (a NASA Lewis multi-architecture test bed (ref. 14)). Other target machines are

being considered, and it is hoped that as more target implementations of APPL are developed outside of
NASA Lewis, these implementations can be accessed and incorporated into APPL, to be distributed with
the APPL software to other interested users.

APPL has also been implemented across a homogeneous network of workstations (SGI, IBM or Sun).

Using this mode, each workstation can be used individually to run multiple processes, or workstations can

be networked, with clusters of processes running on each workstation The size of the cluster may vary

from one machine to another. This capability allows great flexibility, and experience has shown it to be a

very robust development environment. Once an application has been developed, it can be ported to a high-

end machine such as the Iutel iPSC/860, with no modification to the application code. This flexibility

eases code development difficulties encountered with early releases of parallel machines.



Also,someresearchershavelimitedaccessto state-of-the-art parallel systems, but have easier access to

several UNIX-based workstations. A network of workstations may be the only option for studying parallel
processing issues in these situations. Codes developed in this manner can then be easily ported to a
parallel machine ff one does become available in the future.

APPLICATIONS

APPL has been used to implement several applications, both at NASA Lewis and elsewhere. Three of

these applications are now briefly described. Table 3 lists some of the other applications which have been
developed using APPL.

Existing efforts at NASA Lewis involve developing parallel implementations of the average passage turbo-
machinery code (ref. 15). A parallel implementation of the inviscid version of the code, ISTAGE (ref. 10)

has been developed. This simulation was configured for a single blade row, and a medium grain parti-

tioning was used. The parallel ISTAGE code has been ported to a variety of machines, and the per-
formance results are discussed below.

Currently two parallel implementations of MSTAGE, the viscous version of the average passage turboma-

chinery code, are being developed. This simulation is configured for multiple blade rows. A "blade row

parallel" version of the code was developed initially, using a coarse gram partitioning to split the calcu-
lation of each blade row onto a separate processor. The performance results are discussed below for

several platforms. Two medium grain partitionings are underway. One involves splitting the domain along

the K (tangential) dimension, to achieve more parallelism. The other involves splitting the domain along
the I (axial) dimension. It is hoped that these two versions can be merged in the future, for an even finer-

grained partitioning of the application.

Existing efforts at Purdue University involve using APPL to develop a grid-oriented database for parallel

processing of CFD applications (ref. 8). This database is a tool which helps to simplify the programming
of data exchanges between grid blocks, taking into account the differences at grid boundaries. This tool is

able to handle special situations such as a structured grid meeting an unstructured grid, or overlapping

grids. The programmer is able to manipulate grids, rather than dealing with data on the lower, message-

passing level. This database is an example of a tool which is portable by virtue of being developed on top
of APPL.

Also at Purdue, an effort is underway to develop tools to assist in the load-balancing process. Using APPL
across a network of IBM RS6000 workstations has proven to be an ideal environment for this task. Pro-

cesses can be created and clustered on workstations with ease. On machines such as the Imel iPSC/860

hypercube, which allow only a single task per processor, applications must be written to handle the load-

balancing issues. With APPL, the application can be written with the appropriate number of processes

required by the application. The processes can then be clustered on workstations, depending on how each
process contributes to the work load.

PERFORMANCE

The performance of several parallel implementations of applications using APPL are discussed here.

Three performance issues are examined. Firsk the amount of overhead incurred when using APPL rather
than the native message-passing library of a particular machine is studied. This overhead will determine

the extent to which using APPL affects the performance of an application. Second, the communication

rates between processes on all platforms, and on shared memory platforms in particular, is examined. The

APPL implementation of message-passing via shared memory is contrasted with a socket-based imple-

mentation of message-passing. Finally, two application codes written using APPL were ported to a variety

of architectures to determine the effect on performance incurred by porting the application from one

8



machinetoanotherinsucha genericmanner.As apanof thisstudy,the performance of applications

running in parallel on shared memory machines and on networks of workstations using the APPL message-

passing model is examined to determine if such a practice is feasible.

Overhead Measurements

Measuring the amount of overhead incurred by APPL on various parallel platforms involves executing the

application written in the native message-passing library of the machine, and then executing the same

application using APPL on that machine. Overhead is defined as the difference in wall clock time incurred
using APPL rather than the native message-passing library, referenced to the wall clock time using the

native message-passing library. Overhead was calculated on APPL's three distributed memory platforms

0ntel iPSC/860, Delta, and Hypercluster), where a native message-passing library existed for comparison

purposes. The application programs were written in FORTRAN. Table 4 lists the overhead incurred when

using APPL rather than the native library for two test programs.

The first test program is a ring test, which passes a message of a specified size around a ring of 16 pro-

cessors for 100 iterations. The ring test was expected to be the worst case scenario in terms of overhead,

especially for smaller messages, since it is a completely communication-bound application. The overhead

ranges from 23.6% for small message sizes for the worst case on the Delta, to 0.2% for large message sizes
for the best case on the Intel iPSC/860. The overhead incurred on the Hypercluster is substantially less

than that incurred on the commercial machines, which can be attributed to the slower processor speeds and

link rates of the Hypercluster.

A more important concern was minimizing the overhead of an application typical of those used at NASA

Lewis. The RVC code (ref. 16), a 2-D Euler code, was chosen as a typical application. The overhead

incurred with running the RVC code using APPL falls within an acceptable range (0.6% to 3.5%) across all

distributed memory platforms.

Communication Rate Measurements

The communication rate is defined as the number of bytes per second transmitted between two processes.

This value is dependent on the speed of the processors, the speed of the link between processes, and the

efficiency of the software used to transmit information between processes. Figure 10 illustrates the com-
mumcation rates calculated using an APPL ring test on several platforms, for small, medium and large-

sized messages. The communication rates of the distributed memory machines are high for all message

sizes, as would be expected since these platforms are optimized for message-passing. However, it should
also be noted that the communication rates on the shared memory machines are also reasonably high for

medium and large-sized messages. Note the slower communication rate across a network of IBM RS6000

workstations. Also, note the very high communication rate between processes on a single IBM RS6000
workstation.

As described earlier, APPL uses a shared memory implementation of message-passing on shared memory

machines. Although a socket-based implementation is simpler, and has been implemented in more popular

message-passing libraries such as PVM (ref. 17), it has proven to be considerably slower than a shared

memory implementation as illustrated by the communication rates calculated using a socket-based imple-

mentation of APPL in figure 11. This poorer performance is also evidenced in real applications. When the
ISTAGE code, an inviscid average passage turbomachinery code, was executed on an SGI 4D/440 using

both implementations of message-passing, the socket-based implementation proved to be 1.34 times

slower than the shared memory-based version.
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Application Peffgrmance

In porting an application across parallel computer platforms, a variety of architectures are encountered.

Past experience has indicated that significant tuning of an application to a particular architecture is required

in order to obtain the best performance. However, this process renders an application highly machine

specific. Because we were interested in comparing the performance of an application on one machine

versus another when using a portable message-passing library, the ISTAGE code and the MSTAGE code

were run across several platforms. These large-scale codes are typical of those developed and used at
NASA Lewis.

As mentioned above, ISTAGE is an inviscid average passage turbomachinery code, configured for a single

blade row. A 120 x 11 x 11 grid was used for this timing study, and a medium grain partitioning was used

for the domain decomposition. Figure 12 illustrates the performance of the portable, parallel ISTAGE

code on three distributed memory machines, and figure 13 illustrates the performance on two shared

memory machines and a network of workstations. Note that the ISTAGE code did not need to be modified

when the code was moved across these diverse platforms.

Several observations can be made about the performance of ISTAGE on the various target machines. The

ISTAGE code performs well across all of the distributed memory machines on which it was run, until load-

balancing becomes an issue (ref. 10). A network of workstations can be considered a distributed memory

platform; however, the performance of ISTAGE is poor on this platform due to the slower communication

mechanism between processors. ISTAGE performs poorly on the shared memory machines as well, due to

bus contention as processes communicate. Although the communication rates on these platforms are rea-

sonable, neither the shared memory machines nor a network of workstations have parallel communication
links between processors, and this absence adversely affects the performance of applications which require

a significant amount of communication in parallel.

The MSTAGE code is a viscous average passage turbomachinery code, configured for multiple blade rows.

The simulation used for this timing study featured four blade rows. A 218 x 31 x 31 grid was used, and a

coarse gram partitioning was used for the domain decomposition. This is the "blade row parallel" version,

which calculates each blade row on a separate processor. Because of the memory requirements per pro-

cessor of this version of the code, there was a limit to the number of platforms to which the parallel

MSTAGE code could be ported. In particular, the code was restricted from running on commercial dis-

tributed memory machines such as the Intel iPSC/860. Figure 14 illustrates the performance of the
portable, parallel MSTAGE code on three parallel machines, including a distributed memory machine, a

shared memory machine, and a network of workstations. Speedups in the range of 3.73 to 4 were achieved
on four processors of these three parallel machines. Again, the MSTAGE code did not need to be modified

when the code was moved across these diverse platforms. Thus the portable, parallel MSTAGE code

performs well across all three diverse target machines.

The "blade row parallel" version of MSTAGE is limited to using only four processors for a four blade row
simulation. Two techniques were used to extend the MSTAGE code to enable using more processors, and

thereby improving performance. On the Hypercluster, a modified MSTAGE code uses 2 processors per

blade row by splitting the domain along the K (tangential) dimension. Figure 15 illustrates the improved

performance across eight processors. On the SGI 4D/480 machine, the Power Fortran Accelerator (ref. 11)

was used to allow 2 processors per blade row to run DO loop iterations in parallel, in conjunction with the
APPL parallelism. These improved results across eight processors are also illustrated in figure 15.

These timing studies indicate that one must carefully match a parallel application to a hardware platform.
Coarse grain partitioned applications appear to demonstrate good performance on all available platforms.

Medium and fine grain partitioned applications perform well on various distributed memory machines, but

may incur too much communication overhead to demonstrate performance improvements on shared

memory machines or on a network of workstations. Also, factors such as memory availability may restrict
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anapplicationfromrunningona particular platform. It has been concluded, however, that using a portable

library simplifies the task of matching a parallel application to a hardware platform.

In addition, although the performance of fine and medium grain partitioned applications may be poor on

both shared memory machines and a network of workstations, it was concluded that these platforms do

provide an excellent code development environment. On several occasions, the use of a single workstation

or a network of workstations with a stable operating environment helped to eliminate programming errors

before the application code was moved to a larger parallel platform. Also, using a single processor work-

station to simulate a parallel environment helps to encounter errors one at a time, rather than in parallel,

making codes easier to debug step by step. Although this technique will not eliminate all programming

errors, it can reduce the number of errors that will be encountered in the parallel environment. Finally, in

the future, when _g in terms of a network of distributed, heterogeneous machines, the use of a shared
memory machine or a high-end workstation in the computational environment might actually be required.

APPL provides a consistent programming interface across all of these machines.

CONCLUDI)qG REMARKS

The Application Portable Parallel Library has proven to be a portable, user-friendly message-passing

library. APPL has been targeted to a large number of MIMD machines (both shared and distributed

memory), as well as networks of homogeneous workstations. Targets include the Intel iPSC/860, the Intel

Delta, the Silicon Graphics 4D series, the IBM RS6000 series, the Sun Sparcstation series, the Alliant FX/

80, and the Hypercluster (a NASA Lewis multi-architecture test bed). Applications programmed in

Fortran or C using APPL have demonstrated low overhead when compared to results using the native pro-

gramming environment. Also, APPL's implementation of message-passing using shared memory on

shared memory machines has achieved better performance than socket-based message-passing implemen-
tations.

Timing studies comparing the performance of two large scale turbomachinery codes across a variety of

parallel computer platforms have indicated that one must carefully match a parallel application to a

hardware platform. Using a portable library simplifies this task. Also, shared memory machines and

networks of workstations have proven to be ideal parallel code development environments.

APPL is portable across a variety of architectures, and may continue to be enriched with additional target

implementations, as well as additional primitives as needed. Other future work being considered includes

improving the ability to monitor performance, and extending APPL to run across a network of hetero-
geneous machines.
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voidpbegin0
• Initializestheenvironment.Thefirstexecutablestatementin eachuserprogram.

voidpend0
• Cleansuptheenvironment.Thelastexecutablestatementineachuserprogram.

int myid0
• Returnstheprocessidof thecallingprocess.

int nprocs0
• Returnsthenumberof userprocesses.

voidssend(intmsgtype,char*msg,int length,intprocessid)
• A fully blockingsendoperation,whichmustbeusedinconjunctionwithsreev.A buffer

pointedtobymsg, of size length and message type msgtype, is sent to process_id. Execution is

suspended until process_id acknowledges the receipt of the message.

void steer (int type_con& char *msg, int length)

• A blocking receive operation, which must be used in conjunction with ssend. The incoming

message is stored in msg, and is of size <= length, and has a message type of rype_cond. If

type_cond= -1, the next available message is selected. On completion of the receive, an

acknowledgement is returned to the sender.

void asend (int msgtype, char *msg, int length, int process_id)

• A partially blocking send operation which must be used in conjunction with areev. A buffer

pointed to by msg, of size length and message type rnsgrype, is sent to process_id. Execution
continues once the send has been initiated.

void arecv (int type_cond, char *msg, int length)

• A blocking receive operation, which must be used in conjunction with asend. The incoming

message is stored in msg, and is of size <= length, and has a message type of rype_cond. If

type_cond= -1, the next available message is selected. No acknowledgement is returned to the
sender.

int probe (int type_cond)

• A non-blocking probe operation which determines if a message of type= rype_cond is available

to be received. If type_cond= -1, the next available message is selected. Returns 1 if such a

message is found, and 0 if not.

double whattime0

• Returns the value of a counter which reflects the relative time in milliseconds.

int info_pid0

• Returns the process id of the last message received or probed.

int info_lea0

• Returns the length of the last message received or probed.

int info_type0

• Returns the message type of the last message received or probed.

Table 1: APPL Low-Level Primitives
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voidbcast (int msgtype, char *msg, int length, int root)

• Broadcast msg of size length and type msgtype. If root=- myid0, then the calling process is the

broadcasting process. If root != myid0, then the calling process is a receiving process.

void dgsum (double *x, long n, double *work)

• Computes the global sum ofx across all processes. X is a vector of length n. Each element of

the resulting vector is the sum of the corresponding elements of the input vectors of each

process. The result is returned in x on all processes. Since this is a global operation, all pro-

cesses must execute this operation before the computation can continue. Also, igsum exists for
integers, and rgsum for real (single precision) numbers.

void dgprod (double *x, long n, double *work)

• Computes the global product ofx across all processes. Xis a vector of length n. Each element of

the resulting vector is the product of the corresponding elements of the input vectors of each

process. The result is returned in x on all processes. Since this is a global operation, all pro-
cesses must execute this operation before the computation can continue. Also, igprod exists for
integers, and rgprod for real (single precision) numbers.

void dgmax (double *x, long n, double *work)

• Computes the global maximum ofx across all processes. X is a vector of length n. Each element

of the resulting vector is the maximum of the corresponding elements of the input vectors of

each process. The result is returned in x on all processes. Since this is a global operation, all

processes must execute this operation before the computation can continue. Also, igmax exists
for integers, and rgmax for real (single precision) numbers.

void dgmin (double *x, long n, double *work)

• Computes the global minimum ofx across all processes. X is a vector of length n. Each element

of the resulting vector is the minimum of the corresponding elements of the input vectors of each

process. The result is returned in x on all processes. Since this is a global operation, all pro-
cesses must execute this operation before the computation can continue. Also, igmin exists for
integers, and rgrain for real (single precision) numbers.

Table 2: APPL High-Level Primitives

NASA Lewis

• ISTAGE inviscid average passage turbomachinery code

• MSTAGE viscous average passage turbomachinery code

• MHOST general finite element structural analysis program

• PARC3D CFD code

Indiana University-Purdue University at Indianapolis

• Grid-oriented database for parallel processing

• ADPAC turbomachinery code

University Space Research Association (NASA Goddard)

• Gravitational n-body simulations of interacting and merging galaxies

NASA Langley

• VGRIDSG unstructured surface grid generation program

Table 3: Applications developed using APPL
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Machine

Intel iPSC

Intel Delta

Hypercluster

SMALL (8 B)

Native APPL Overhead

0.126 0.147 16.7%

0.110 0.136 23.6%

0.215 0.231 7.4%

MEDIUM (2 KB)

Native APPL Overhead

1.564 1.580 1.0%

0.679 0.703 3.5%

1.994 2.010 0.8%

LARGE ( 16 KB)

Native APPL Overhead

9.743 9.763 0.2%

3.704 3.819 3.1%

12.123 12.212 0.7%

a. Ring test: 16 processors, 100 iterations, wall clock time in seconds

Machine

Intel iPSC

Intel Delta

Hypercluster

Native APPL Overhead

6.002 6.036 0.6%

5.420 5.609 3.5%

6.500 6.619 1.8%

b. 2-D Euler code: 16 processors, 100 iterations, 65 x 65 grid, wall clock time in seconds

Table 4: Overhead incurred using APPL rather than each machine's native

message-passing library
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Intel iPSC/860:

fsang babbage

Alliant FX/80:

laplace

fsang alliantl /usr/lerc/fsang/work

Network of IBM RS6000s:

-2 4

4 laplace laplace laplace laplace

fsang lace20 /home/fsang/work 1 laplace
fsang lace21 gaome/fsang/demo 1 laplace
guest hercules /u/guest/work 1 laplace
fsang lace28 /home/fsang/work 1 laplace

Figure 1: Sample process definition files

Process Definition File: 1"-]"-"-'7"1

Imtiator's function: getcube, load, waitall, relcube

Intel iPSC/860

Process Definition File:

fsang laeel0 /trap 1 laplace

fsang laeell /Imp 1 laplace

guest laeel2 /wrk 1 laplace

fsang laeel3 /map 1 laplace

Initiator's function: fork, execv, rsh

pbegin's function: shmget, semget

•,._ INrrlATOR [ _

Network of
IBM RS6000s

Figure 2: Function of the Initiator Process
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Figure 3: Process cluster

TCP/IP
connection

A

B

CP

Cluster 0

c

s2

Cluster 1

Figure 4: Message transmission between clusters
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T=0°C

14

T=0°C 8
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1234 5678 --- 14

T= 100 _ C

T=0°C

Figure 7: Discretized example problem

P0 P1 P2 P3

12345 12345 12345 12345

Figure 8: Dividing the problem using four processes
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C The following parameters were read or calculated by the calling process, and were passed to the

C subroutines below via a common block (include 'laplace.h').

C rows

C cols

C my_col
C

C

C

C north, south, east, west
C interior

C max_iter

C

Total number of grid rows

Total number of grid columns

Number of grid columns for my process. Each process has its share of the grid,

plus two boundary columns to store incoming columns from its neighbors:

my_col= ((cols-2) / nprocs0) + 2

The value of my_col should be a whole numb¢r in order for this example to work correctly.
Boundary tempcratu_s

Interior ternpcrature

Maximum iterations

subroutine laplace(temp_a, romp_b)

include "laplace.h'

double precision tump_a(rows, my_col), temp_b(mws, my_col)

caUpb_,_n

Determine neighboring processes

right= mod((myid0 + 1), nprocs0)

left= myid0 - 1

ff (right .eq. 0) right=- - 1

callInitializeGridTemperatureValues0

C Main iteration loop: compute two iterations to swap from tcrap_a to temp_b and back.

do 1 iterations= 1, (max_iter/2)

call do_iteration (tump_a, temp_b)

carl do_iteration (t_mp_b, temp_a)
1 continue

C

callPrinLResults 0

callpcnd
end

subroutine do_iteration (old, new)

include 'laplace.h'

double precision old(rows, my_col), new(rows, my_col)

LCOL= 10

RCOL= 20

num_by_es= (rows-2)*8

Transmit data to neighbors

if (right .ne. -1) call asend (RCOL, old(2,my_col- 1), num._bytes, right)

if (left .ne. -1) call asend (LCOL, old(2,2), num_byms, left)

Receive data from neighbors

if (right .ne. -1) call arecv (LCOL, old(2, my_col), num_bytes)

if (left .he. -1) call arecv (RCOL, old(2, 1), num_bytcs)

C Perform calculationon my sectionofgrid

do 2 j= 2,my coi-1

do 3 i= 2, rows-1

new(i, j)= (old(i+l,j) + old(i-l, j) + old(i, j+l) + old(i, j-l))/4.0
3 continue

2 continue

end

Figure 9: Pseudo-code segment
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